
CHAPTER 7

RELIABILITY DATA ANALYSIS

INTRODUCTION

It is important to understand that for any realistic situation the true re-
liability characteristics of a system, or fleet of systems, are never known
with complete certainty. This is true, of course, because we have not, in
fact, actually tested every system in the total population and, practically
speaking, never could. To compensate for this lack of total information, some
form of sampling is used to obtain information about the reliability char-
acteristics inherent in a system and to quantify the level of uncertainty
about them. Of course, uncertainty continues to exist, and, as a consequence,
the reliability parameters can only be estimated. This chapter presents pro-
cedures which can be used to determine estimates for the various reliability
parameters and to quantify the uncertainty inherent in these estimates.

These procedures support the analysis of data gathered in previously conducted
tests. Planning these tests to assure that adequate sample sizes are obtained
is the topic of Chapter 8. The objective of the data analysis effort is to
determine “best estimates” of system performance parameters, such as reli-
ability, and to estimate the uncertainty associated with these “best estimate”
values.

As in previous chapters, the case studies illustrate the application and
manipulation of the mathematical concepts presented in the chapter text. Note
that in the typical Chapter 7 case study, YOU are provided the results of a
hypothetical test program and requested to develop a best estimate and con-
fidence interval for a reliability parameter.

TYPES OF RELIABILITY TESTS

Fixed Configuration and Growth Tests

There are basically two types of reliability tests. One is a test of fixed
configuration. The other is the growth, or developmental, test, which centers
on reliability improvement seen as the configuration changes during the test.
There is not, however, a clean line between these two types. For the truly
fixed configuration test of continuously operated systems, any changes in
reliability are due to the inherent characteristics of the hardware and how it
is ❑ aintained. The analysis is done as a function of system age. If there
are design changes, they have to be considered on a separate basis, perhaps by
a data set for each configuration. See Chapter 10 for more details on this
procedure.

For the growth type of test, the statistical models currently available assume
that all changes in reliability are attributable to the design changes. In
other words, they assume that the inherent reliability of the hardware is
constant. The basic analysis for the growth type of test is done’as a func-
tion of test exposure, rather than age, since it is test exPosure that ~rc-
vides information for design improvements. The effects of system age can be
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dealt with separately, primarily
observed. Chapter 9 summarizes
lustrates the associated analysis

Discrete and Continuous Tests

The most elementary consideration
whether test time is measured

by considering the failure modes that are
the topic of reliability growth and il-
techniques.

in beginning a data analysis is to determine
continuously or discretely. Usuallv. this

distinction is quite obvious. An example of a test which can be analyzed
either way is the following. Suppose that a system has a durability require-
ment of 5000 hours and ten systems are available for testing. Each system is
tested until it either experiences a durability failure or successfully com-
pletes the 5000 hour test period. We can let each system be a test unit and
count as a failure any system which fails before 5000 hours. This is a dis-
crete time approach. Alternatively, we could let hours be our test units,
with the total operating hours of the 10 -systems as the test exposure. This
is a continuous time approach. Another example is the firing of an automatic
weapon, where many rounds are fired. This is a one-shot, discrete time test
if we are analyzing the ammunition, but could be considered a continuous time
test if we are analyzing the gun or any of its components. Generally, when
either appreach is appropriate, more information is obtained from the—— —.
continuous time app

-...
roach.

DISCRETE TIME TESTING

Suppose that the systems under test are single-shot systems. Each test unit
results in a distinguishable success or failure. As discussed in Chapter 5,
the binomial model will be used to represent or model system reliability when
discrete time or success/fail operations are of interest. It is assumed
throughout this discussion on discrete time testing that the conditions of a
binomial model are reasonably satisfied. (See Chapter 5.) We present data
analysis for success/fail (discrete) tests in the form of point estimates,
confidence intervals, and tests of hypotheses.

Binomial Model: Point Estimate of Failure Probability

Once the number of trials has been specified (see Chapter 8), all the informa-
tion contained in a binomial experiment rests in the number of failures that
occur. We use this information to make an assessment or an estimate of the
true probability of failure, p. Thus, our best estimate of the value of p is
the ratio of the number of failures to the number of trials . This ratio is
called the sample proportion of failures and is designated by the symbol ~,
called p-hat. We use this sample proportion of failures, j, to construct
confidence intervals for p and in testing hypotheses about p. By definition,
then

p=

j=

p.

number of failures
number of trials

= sample proportion of failures

best estimate for p

true proportion of failures
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Note that true system reliability is the probability of successful operation,
therefore

R=l - p, where R is true system reliability, and

~=1 - ~ = best estimate of system reliability.

It is important that the test designer and/or evaluator understand that a
point estimate for p represents a small portion of the information contained
in the data generated by a binomial experiment. Other useful information
includes upper and lower confidence limits for the unknown parameter, p.

Binomial Model: Confidence Limits for Failure Probability

Confidence limits and their interpretation should play a vital role in de-
signing and evaluating a binomial experiment. Not only does the actual in-
terval relay a significant amount of information about the data, but also the
method of interval construction can aid the test designer in determining
adequate test exposure to meet his needs. An extensive discussion on the
interpretation of confidence intervals is given in Chapter 6.

Suppose that we observe “s” failures out of “n” trials in a binomial experi-
ment. This translates to a sample proportion of failures equal to s/n and a
sample proportion of successes equal to (n-s) /n. Tables of exact confidence
limits for the true proportion of failures for values of n less than or equal
to 30 are given in Appendix B, Table 4. As an example, suppose that n = 25
trials and s = 4 failures. A 90% upper confidence limit for p is 0.294. We
obtain this value using Appendix B, Table 4 with n = 25 in the column labeled
90% upper limit and the row labeled s = 4. For the same data, a 98% con-
fidence interval is

0.034 ~ p < 0.398.—

In this case, the values are found in the columns labeled 98% interval and the
row labeled s = 4. More examples using Table 4 are given in Case Study 7-3.

Binomial Model: Confidence Levels for Pre-Established Reliability Limits

If, after conducting a test in which we observed s failures (c = n-s SUC-
cesses) out of n trials, we wish to determine how confident we are that a
pre-established level of reliability (such as the MAV) has been met or ex-
ceeded, we may use equation 7.1 below.

Let RL designate the desired pre-established level of reliability. TO find

the confidence that RL has been met or exceeded, we evaluate the expression:

B (c-1) = ~~~ (;) RLk(l-RL)n-kn,R
L

(7.1)

If we denote the value of this expression as 1 - (Y, then we are 1OO(1 - ~)%
confident that R > R

– L“
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If, on the other hand, we wish to determine how confident we are that a pre-
established level of reliability (such as the SV) has not been attained, we
may use equation 7.2.

Let ~ designate the desired pre-established level of reliability. To find

the confidence that RU has not been attained, we evaluate the expression:

‘n’% ‘c) = jo(:) ~k(l-R#-k (7.2)

If we denote the value of this expression as a, then we are 100(1 - ~)% con-
fident that R <

- %“

See Case Study 7-1 for an example of this technique.

The Greek letter a is used numerous times
throughout this chapter to represent a general-
ized value or designation of “RISK.” In this
chapter, u is not necessarily to be interpreted
as producer’ s risk as in Chapters 6 and 8.

Approximate Binomial Confidence Limits (Normal Approximation)

If the number of failures and the number of successes both are greater than or
equal to 5, we can obtain approximate confidence limits using the normal
distribution. The approximate 100( 1-cY)% lower limit for p, the true propor-
tion of failures, is

where f = s/n. The approximate 100(1-u)% upper confidence limit for p is

The two-sided 100(1-u)% confidence limits for p are

(7.5)
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Values for Zu and zci/2
are obtained from Appendix B, Table 2.

As an example, suppose that 5 failures in 30 trials occurred during a test.
An approximate 90% ((Y = 0.10) upper limit for the true proportion of failures
is

Substituting n = 30, and p = 5/30 = 0.166, we obtain

0.166 + 20 ~oJ (0.166)(0.834)/30 .

‘he ‘alue ‘f ‘0.10 is determined using Appendix B, Table 2. Under the column

labeled P(Z > Za) we search the values until we find the number closest to—

0.10, the value of a. The number in the column labeled Za is the desired

value. In this case, for a = 0.10, Za = 1.28. The upper limit is then

0.166 + 1.28~(0.166)(0.834)/30 ,

which reduces to 0.253. We are thus 90% confident that the true proportion of
failures is 0.253 or smaller.

See Case Study 7-3 for construction of confidence limits using normal approxi-
mation.

Approximate Binomial Confidence Limits (Poisson/Exponential Approximation)

When the sample proportion of failures is small, and the number of trials is
reasonably large--at least 30--we can obtain approximate confidence limits
using techniques described in the section on Exponential Model: Confidence
Intervals and Limits for MTBF- This is an especially useful technique for
situations involving very few failures in fairly large samples. We use the
procedure for failure terminated testing with the identifications: T = n (the
number of trials) and r = s (the number of failures). We obtain approximate
confidence limits for p, the probability of failure, by constructing confi-

dence limits for 6, the system MTBF. Because p and A are failure-oriented
parameters and 0 is a success-oriented parameter (remember that by definition
9 = l/A), an approximate confidence limit for p is the reciprocal of the
confidence limit for e. An important consequence of the reciprocity mentioned
above is that an upper confidence limit for 0 yields a lower confidence limit
for p and vice versa.

Consider the situation described in Chapter 6, where 3 failures out of 30
trials of a binomial experiment were observed. To construct an approximate
900~ confidence interval for the true proportion of failures, we let T be 30
and r be 3. The 95% confidence interval for 6 is

2T <0< 2T
2 – 2

‘u/2,2r ‘1-ci/2,2r
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since T = n= 30, r = s = 3, and o! = 0.05, we have

2(30) < (3 : ;(30)—

‘;.025,6 ‘0.975,6

2 2
‘a~ues ‘or ‘0.025,6 and ‘0.975,6 are obtained from Appendix B, Table 5. The

explanation of how to extract these values is presented below in the section
entitled “Exponential Model: Confidence Intervals and Limits for MTBF.” The

2
values are X. 025 6 = 14.46 and x; 975 b = 1.24. Thus the interval for 0 is

9 Y

2(30) 2(30)
14.46 S 6 S 1.24 ‘

which, upon simplification, becomes

4.15 < 0 < 48.39 .— —

Taking the reciprocals of the limits for 0, we have that
confidence interval for the true proportion

0.021 < p < 0.241 .——

Since reliability is 1 - p, the approximate
reliability is

of failures is

95% confidence

the approximate 95%

interval for system

0.759 < R < 0.979 .——

This statement can also be interpreted as follows: We are 95% confident that
the true
based on

See Case

system reliability is between 0.759 and 0.979. This interval is
our test results where 3 out of 30 trials ended in failure.

Study 7-2 for another example of this procedure.

Point Estimates and Confidence Limits for the Difference/Ratio of Proportions

Suppose that tests have been conducted on two different types of systems re-
sulting in sample proportions of failures of fil and fi2 with sample sizes of nl

and nL, respectively. The point estimates for the difference (pl - p2) and

ratio (pl/p2) of proportions are the difference and ratio of the sample pro-

portions, i.e., ~1 - :2 and fil/627 respectively. We present the procedures

for determining confidence limits for the difference and for the ratio of the
two population proportions (pl and p ) using the normal distribution.

2
proximate 100(1 - a)% lower confidence limit for the true difference
portions is

The sp-

in pro-
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The approximate 100 (1 - a)% upper confidence limit for the true difference in
proportions is

PI - P~ s (Pl - P2)~

91-62+

The approximate 100(1 -
proportions is

zaJfil(l-fil)/nl  + p2(l-p2)/n2 .

a)% confidence interval for the true difference in

;1 - :2 + p2(l-p2)/n2 s PI - P2- za/2Jp1(l-pl)/nl

z 31 - 52 + za/2h1(l-pl)/nl  + p2(l-p2)/n2 .

With high reliability systems, it is sometimes more informative for comparing
two systems to look at the ratio of proportions of failures. As an example,
suppose that the true proportions of failures for two systems are 0.01 and
0.001. We can say that one system is ten times better than the other even
though the difference is a mere 0.009. An approximate 100(1 - CY)% lower
confidence limit for the true ratio of proportions is

P1/P2 ? (p#pz)L

The approximate 100 (1 - u)% upper confidence limit for the true ratio of
proportions is

The approximate 100 (1 - ti)% confidence interval for the true ratio of propor-

In Case Study 7-4, we construct confidence limits for the difference and ratio
of population proportions.

7-7



CONTINUOUS TIME TESTING

Suppose the systems under test operate as a function of hours, kilometers, or
other continuous measure. In such a case, the data are not solely success/
failure oriented. Generally, the times at which failures occur and the time
in operation without failures must also be considered. These types of tests
are analyzed by using a Poisson model. When the failure rate remains constant
throughout the test, the exponential distribution describes the times between
failures and provides all the information needed for the data analysis. For
the analysis presented in subsequent sections of this chapter, we will assume
that the failure rate is constant. We present below a graphical procedure to
determine if that assumption is reasonable.

Continuous Time Testing: Failure Pattern Identification

When confronted with data from a continuous time test the analyzer should
first construct an average failure rate plot. The purpose of constructing an
average failure rate plot is to help the analyst determine whether the failure
rate is increasing, decreasing, or is constant. The type of failure rate plot
that will be described considers hardware that did not have significant design
changes made, so that changes in the failure rate are due primarily to the age
of the equipment. (When substantial design changes are made, there may be
reliability growth. In that case, a different type of average failure rate
plot is used, which is based on cumulative test exposure rather than the age
of the equipment.)

The average failure rate plot is constructed as follows:

1.

2.

3.

4.

5.

6.

7.

Determine the lowest and highest equipment ages which the test experience
covers. These need not be ages at which failures occurred. This estab-
lishes the lower and upper limits of the plot. For convenience, working
limits may be set at “round” numbers above and below the lower and upper
limits , respectively.

Divide the interval encompassed by the working limits into subintervals.
The subintervals need not be of equal size.

Count the number of failures in each subinterval. (A minimum of 5 fail-
ures per subinterval is desirable, though not absolutely necessary.)

Add up the hours (or miles, rounds, etc.) of operation within each sub-
interval.

Compute the average failure rate for each subinterval by dividing the
number of failures in the subinterval by the hours (or miles, rounds,
etc.) of operation in the subinterval.

Construct a graph, with the system age (in hours, miles, rounds, etc.) on
the horizontal scale, and failure rate on the vertical scale. The aver-
age failure rates computed for each subinterval are shown as horizontal
lines over the length of each subinterval.

If the average failure rate plot has too much fluctuation to show any
kind of trend, reduce the number of subintervals and repeat steps 3
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8.

9.

10.

11.

through 6. For very small amounts of data, it may be necessary to use
only two subintervals.

From the final version of the average failure rate plot, judge whether
the failure rate trend remains constant, increases , or decreases as the
equipment ages. For small amounts of data it may be difficult to make
this judgment. In any case, statistical tests for trend may be used.

If the data are judged to have no trend, analyses based on the exponen-
tial distribution may generally be used with validity.

If the failure rate is judged to be increasing or decreasing, as a mini-
mum, a note to this effect should accompany any analyses based on the as-
sumption of exponential times between failures. To analyze data that
appear to have a trend more explicitly, a non-homogeneous Poisson process
may be fitted to the data. We do not present any analysis using a non-
homogeneous Poisson process in this chapter. If the average failure rate
plot indicates that a constant failure rate assumption is unwarranted,
the data analyst may refer to a statistics text which covers the topic of
stochastic processes in depth to aid in his analysis.

See Case Studies 7-5 and 7-6 for examples of average failure rate plots.

Exponential Model: Point Estimate of MTBF

When data are judged to show a constant failure rate, the exponential distri-
bution may be used for data analysis. Exponential analysis does not require
the use of actual failure times.

Notation T = total test exposure, the total hours, miles,
etc. , accumulated among all the items included
in the sample

r = number of failures observed

6= point estimate of MTBF

R(x) = point estimate of reliability for a specified
exposure, x

i= the point estimate of the failure rate

Formulas

6=: (7.6)

Exponential Model: Point Estimates of Reliability and Failure Rate

Point estimates of reliability and failure rate may be developed from point
estimates of MTBF as follows:

i(x) = e
-x/ii

7-9
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i = 1/$ (7.8)

See Case Studies 7-7, 7-8, and 7-9 for illustrations of computing point esti-
mates.

Exponential Model: Confidence Intervals and Limits for MTBF

Notation T

r

X 2 ,

a

6 = MTBF

R(x) = reliability for
a period x

A = failure rate

= total test exposure, the total hours, miles>
etc. , accumulated among all the items included
in the sample

= the number of failures observed

= a chi-square value, identified by two sub-
scripts. To determine a chi-square value using
Appendix B, Table 5, we use the first subscript,
a function of the risk (cY), to indicate the
column, and the second subscript, a function of
the number of failures (r), to indicate the row.

= the risk that a confidence statement is in
error. Note: The symbol a used here does not
necessarily represent the producer’s risk as
discussed in Chapter 6.

[

no subscript = true
but unknown value

Used in
conjunction L subscript = lower limit

with 1 U subscript = upper limit

7-1o

. .. ———. -.



Formulas (All the formulas listed below will yield statements at the
100(1-a%) level of confidence.)

Time Terminated

When the test exposure ends at a time
other than a failure occurrence, use
Appendix B, Table 8a multipliers or
the following formulas.

Interval for specified confidence
level

2T <e< 2T
(7.9a)—

‘;/2,2r+2
– 2

‘1-Q/2,2r

See Case Studies 7-7 and 7-8.

Lower limit for specified confi-
dence level

e~eL

e~22T (7.10a)

‘a,2r+2

Upper limit for specified confi-
dence level

e~ 22T
‘1-cf,2r

(7.lla)

Failure Terminated

When the test exposure ends at a
failure occurrence, use Appendix
B, Table 8b multipliers or the
following formulas.

Interval for specified confidence
level

‘LSeSeU

2T 2T
2 5852

(7.9b)

‘cY/2,2r ‘1-ci/2,2r

See Case Study 7-9.

Lower limit for specified confi-
dence level

e~eL

e?+ (7.10b)

‘a,2r

Upper limit for specified confi-
dence level

e~22T
‘1-a,2r

(7.llb)

See Case Study 7-7, See Case Study 7-9.
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Confidence That A Specific Lower Limit Has Been Attained

Time Terminated Failure Terminated

Confidence that a specific lower Confidence
limit, OL, has been attained limit, eL,

that a specific lower
has been attained

.22
‘;,2r+2 6L (7.12a) (7.12b)

Search *’ tables in row labeled Search XL tables in row labeled
2r + 2 for the numerical value, 2r for the numerical value,
2T/O. , and find the associated 2T/f3. , and find the associated
valu$-for a.

Confidence that

is 100(1-a)%.

The value, a, may also be
determined in closed form
as follows:

r (T/OL)k e-(T’eL)
@= z

k=o
k!

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

is 100(1-a)%.

valu~ for a.

Confidence that

e~eL

is 100(1-CY)%.

The value, CY, may also be
determined in closed form as
follows:

- (T/OL)
r-1 (T/OL)k e

(7. 13a) ~.~ k! (7.13b)
k=()

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

O~eL

is 100(1-a)%.

See Case Studies 7-7 and 7-8. See Case Study 7-9.
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Confidence That A Specific Upper Limit Has Not Been Attained

Time Terminated

Confidence that a specified upper
limit, Ou, has not been attained

2 .g
‘1-f.Y,2r (3U (7.14a)

Search X2 tables in the row labeled
2r for the numerical value, 2T/f3U,
and find the associated value for l-a.

Confidence that

6:6U

is 100(1-CY)%.

The value a may also be determined
in closed form using the following
equation:

r=l (T/8U)k e-(T/eu)
l-~ = ~ k! (7.15a)

k=o

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

is 100(1-a)%.

See Case Study 7-7.

Failure Terminated

Confidence that a specified
upper limit, 6u, has not been
attained

2 .2J
‘1-a,2r 6U

(7.14b)

Search X2 tables in the row
labeled 2r for the numerical
value , 2T/OU , and find the
associated value for l-a.

Confidence that

e:eu

is 100(1-a)%.

The value u may also be deter-
mined in closed form using the
following equation:

-(T/OU)
r-1 (T/Ou)k e

l-~ = ~ k! (7.15b)
k=o

(Use Appendix B, Table 3 or
Chart 1 to evaluate this ex-
pression.)

Confidence that

(3:6U

is 100(1-Q)%.

See Case Study 7-9.
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Exponential Model: Confidence Intervals and Limits for Reliability and Fail-
ure Rate

Intervals for reliability and failure rate with 100(1-a)% confidence are

RL(x) s R(x) SRU(X)

(7.16)
-(x/eL) -(x/eu)

e < R(x) < e. —

and

\~A~h

I/eu : A < I/eL (7.17)—

where 0
L

and 0
u are the lower and upper limits of the 100(1-a)% confidence

interval for El (MTBF).

Lower limit for reliability and upper limit for failure rate with 100(1-a)%
confidence are

R(x) ~ RL(x)

- (x/eL)
R(x) > e—

and

A<
-%

(7.18)

(7.19)

where 0 L is the 100(1-a)’jll lower confidence limit for 6 (MTBF),

Upper limit for reliability and lower limit for failure rate with 100(1-~)%
confidence are

R(x) : ~u(x)

-(x/eu)
R(x) < e—

and

A>
-%

A >  I/eu—

Where 6U is the 100(1-a)% upper confidence limit for 0 (MTBF).

(7.20)

(7.21)
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CASE STUDY NO. 7-1

Background

The engine for a light armored vehicle must have a 0.90 probability of com-
pleting 100,000 miles without an operational durability failure. In order to
evaluate durability, four vehicles are tested. Each vehicle is operated until
a durability failure occurs or until it successfully completes 100,OOO miles
of operation without experiencing an operational durability failure.

Determine

1. If no failures occur, what confidence do we have that the requirement has
been met or exceeded?

2. If 1 failure occurs, what confidence do we have that the probability is
at least 0.75? ~

3. If 2 failures occur, what confidence do we have that the probability is
at least 0.50?

Solution

1. Since no failures have occurred, the number of successes is 4. We use
equation 7.1 with

n = 4

S = 4

RL = 0.90.

The confidence is:

: (:)(o.9)k(o.H4-k  = (:)(0.9)
0(0.1)4 +(:)(0.9)1(0.1)3

k=o

+ (:)(0.9)2(0.1)2 + (;)(0.9)3(0.1)’

= (1)(0.0001) + (4)(0.0009) + (6)(0.0081) + (4)(0.0729)

= 0.0001 + 0.0036 + 0.0486 + 0.2916 = 0.3439.

We are 34% confident that the reliability meets or exceeds 0.90.
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2. The number of successes is 3. We use equation 7.1 with

n = 4

S = 3

RL= 0.75.

The confidence is:

i (4)(0. 75)k(0.25)4-k = 0.2617.
k=() k

We are 26% confident that the reliability meets or exceeds 0.75.

3. The number of successes is 2. We use equation 7.1 with

n = 4

S = 2

‘L
= 0.5.

The confidence is:

1 4

_()k~o k ((;”5)k(Oo5)4-k
= 0.3125.

We are 31% confident that the reliability meets or exceeds 0.50.

Commentary

It is interesting to note that with the small sample size, we can only reach
34% confidence that the requirement has been met or exceeded, even though we
encountered zero failures. In many cases, durability requirements are im-
possible to demonstrate at high confidence levels because sample sizes are
almost always constrained to be small.
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CASE STUDY NO. 7-2

Background

A launcher for a medium range anti-tank missile has been tested. of 100
missiles, 95 were launched successfully.

Determine

1. Point estimate of reliability.

2. Construct a 90% upper limit on the true proportion of failures using the
Poisson/exponential approximation.

3. Construct an 80% confidence interval on the true reliability using the
Poisson/exponential approximation.

Solution

1. Point estimate of p, the true proportion of failures is 5/100 = 0.05.
Consequently, the point estimate for the reliability, R, is

i= 1 - j = 1 - 0.05 = 0.95.

2. We set T=n=lOO, r= s=5, anda =0.10. The approximate 90% upper
limit for p, the true proportion of failures, is obtained by first determining
a 90% lower limit for 0. The 90% lower limit for 0 is

Oq

2T
~2

‘u,2r

> 2(100)
– 15.99

> 12.51.—

Consequently, the 90% upper limit for p is

PSPU

1
S 12.51

< 0.08.—
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Thus, we are 90% confident that the true proportion of failures does not
exceed 0.08.

3. Weset T=n=lOO, r=s =5, anda=O.20. The 80% interval for R, the
launcher reliability, is obtained by first determining an 80% interval for 0.
The 80% interval for O is

‘L SeseU

2T 2T
2 5e52

‘ci/2,2r ‘1-ct/2,2r

2(100) < e < 2(100)
18.31 – – 3.94

10.92 < 0 < 50.76.— —

Consequently, an 80% interval for p, the true proportion of failures is

1 1
50.76 ‘p S 10.92

0.02 < p < 0.09.— —

The 80% interval for the reliability, R, is

‘LSRSRU

1- 0.09 < R < 1 - 0.01— —

0.91 < R < 0.98.— —

We are 80% confident that the true launcher reliability is between 0.91 and
0.98.
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CASE STUDY NO. 7-3

Background

A new missile system has been under development and is ready for production.
The contract specifies that the producer must demonstrate a proportion of
successes at least equal to 0.85 (SV) . The user will accept as a minimum a
demonstration of at least 0.70 (MAV) . An initial production test of 30 fir-
ings was conducted for the missile system, and 6 missiles fired improperly.

Determine

1. What is our best single value estimate for the true proportion of fail-
ures?

2. Construct exact 90%, 95%, and 99 .5% lower confidence limits for the true
proportion of failures.

3. Construct exact 90%, 95%, and 99. 5% upper confidence limits for the true
proportion of failures.

4. Construct approximate 60%, 70%, 80%, and 90% two-sided confidence limits
for the true proportion of failures, using the normal approximation to the
binomial.

5. Provide an accept/reject criterion which permits the greatest number of
acceptable failures which still meets a consumer’ s risk of no more than 10%.
What is the producer’ s risk for this criterion? Is the system acceptable
under this criterion?

6. Increase the sample size to 40 and 50. Provide an accept/reject
criterion to meet a producer’ s risk of 15%. What is the consumer’ s risk for
each criterion?

Solutions

1. Point estimate: 6/30 = 0.20. This corresponds to an 80% reliability.

2. Lower confidence limits: Use Appendix B, Table 4.

a. 90% Lower limit, n = 30,
Lower limit = 0.109.

b. 95% Lower limit, n = 30,
Lower limit = 0.091.

c. 99.5% Lower limit, n = 30,
Lower limit = 0.054.

Note that the three solutions above

s = 6.

s = 6.

s = 6.

are lower confidence limits on the true
proportion of failures, i.e. , lower limits on unreliability. If we subtract
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any of the lower limits from 1, we obtain an upper limit on reliability. To
convert the 90% lower limit on unreliability (0.109) to an upper limit on
reliability, we subtract it from 1, i.e., 1 - 0.1O9 = ().891. This means that
we are 90% confident that the true reliability does not exceed 0.891.

3. Upper confidence limits: Use Appendix B, Table 4.

a. 90% Upper limit, n = 30, s = 6.
Upper limit = 0.325.

b. 95%! Upper limit, n = 30, s = 6,
Upper limit = 0.357.

c. 99.5% Upper limit, n = 30, s = 6.

Upper limit = 0.443.

Note that the three solutions above are upper confidence limits on the true
proportion of failures, i.e., upper limits on unreliability. To obtain a
lower limit on reliability, we subtract the corresponding upper limit on
unreliability from 1. The 90% lower limit on reliability is thus: 1 -
0.325 = 0.675. This means that we are 90% confident that the true reliability
exceeds 0.675.

4. Approximate two-sided .limits (normal), for j = s/n = 6/30 = 0.2:

Lower limit = $ - z~/2Jimim

Upper limit = j + za,2Jm

Note that the values for z
a/2

can be found in Appendix B, Table 2, To use the

table for two-sided limits, we convert the confidence percentage (say 60%) to
a value for ff(O.40), divide that value by 2((Y/2 = 0.20), and locate the value
for z

a/2 (20.20 = 0“84).

a. 60%

b. 70%

c. 80%

@ = 0.40
‘cY/2 = ‘0.20 = 0.84

Lower limit = 0.139
Upper limit = 0.261

~ = ().30
‘a/2 = ‘0.15 = 1.04

Lower limit = 0.124
Upper limit = 0.276

N = 0.20
‘a/2 = ‘0.10 = 1.28

Lower limit = 0.107
Upper limit = 0.293
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d. 90% a=o. lo
‘ci/2 = ‘0.05

= 1.645

Lower limit = 0.080
Upper limit = 0.320

5. a. Use Appendix B, Table 1, n = 30. The probability of 5 or fewer
failures when p is 0.3 is 0.0766. (Recall that p = 0.3 corresponds
to a reliability of 0.7. ) The probability of 6 or fewer failures
when p is 0.3 is 0.1595. Because the consumer’ s risk is not to
exceed 10%, we must make our decision criterion to accept with 5 or
fewer failures and reject with more than 5 failures. The decision
criterion to accept with 6 or fewer failures results in a consumer’s
risk of 15.95%, which exceeds the requirement of a 10% consumer’s
risk. Note that the actual consumer’ s risk for the criterion to
accept with 5 or fewer failures is 7.66%.

b. Use Appendix B, Table 1, n = 30. The producer’ s risk is the prob-
ability of rejecting the system when it has met the specification of
0.15 proportion of failures (i.e. , a reliability of 0.85) . We
reject the system if 6 or more failures occur. The probability of 6
or more failures is the difference between 1 and the probability of
5 or fewer failures. The probability of 5 or fewer failures when p
is 0.15 is 0.7106. Consequently, the producer’s risk is 1 - 0.7106
or 0.2894 (28.94%) .

c. The system is not acceptable because in fact more than 5 failures
occurred.

6. a. Appendix B, Table 1, n = 40, p = 0.15. Producer’ s risk must
exceed O. 15.

r P(r or fewer failures) P(r+l or more failures)—

7 0.7559 0.2441

8 0.8646 0.1354

not

The criterion is to reject if 9 or more failures occur; otherwise,
accept.

The consumer’ s risk, the probability of accepting the system when,
in fact, it has fallen below the MAV of 0.7, is the probability that
8 or fewer failures occur when the true proportion of failures, P,
is 0.3. This value is 0.1110. Thus , there is an 11. 1% chance of
accepting a bad system with this plan.

b. Appendix B, Table 1, n = 50, p = 0.15. Producer’s risk must not
exceed O. 15.

r P(r or fewer failures)— P(r+l or more failures)

9 0.7911 0.2089

10 0.8801 0.1199
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The criterion is to reject if 11 or more failures occur; otherwise,
accept.

The consumer’ s risk (note above definition) is the probability that
10 or fewer failures occur when p is 0.3. This value is 0.0789.
Thus , there is a 7 .89% chance of accepting a bad system with this
plan.

Note that for a fixed producer’s risk (approximately 13%) , the
consumer’s risk decreases as the sample size increases. An in-
creased sample size will also result in a decreased producer’s risk
when the consumer’s risk is held approximately constant.
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CASE STUDY NO. 7-4

Background

Two contractors are competing for a contract to produce an electronic guidance
system. Twenty-five units from Contractor I and thirty units from Con-
tractor 2 have been tested. The results of the test are: Contractor 1 had 2
failures, Contractor 2 had 7 failures.

Determine

1. What is the point estimate of the difference in the true proportions of
failures for the two contractors?

2. What is the point estimate of the ratio of the true proportions of fail-
ures for the two contractors?

3. Construct an approximate 90% lower confidence limit for the difference in
the true proportions.

4. Construct an approximate 90% lower confidence limit for the ratio of the
true proportions.

5. What confidence do we
as bad as Contractor 2’s?

Solutions

1. 61 - fjz = 7/30 - 2/25

2. 61/62 = 7/30 + 2/25 =

3. Lower limit = ~1 - fiz

= 0.153 -

For a 90% lower limit, a

have that Contractor 1’s system is at least twice
At least 50% worse than Contractor 2’s?

= 0.233 - 0.080 = 0.153.

(7)(25)/2(30) = 2.91.

- zaJfil(l-fil)/nl + p2(l-p2)/n2

Za~(0.233)(0.767)/30  + (0.08)(0.92)/25

= 0.10 and Zu = 1.28. (See Appendix B, Table 2.)

The lower limit for the difference in true proportions is 0.031. This means
that we are 90% confident that the difference in the true proportions of fail-
ures is at least 0.031.

= 2.91 - Z& ti(0.233) (0.92)/25(0.08)2 .
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For a 90% lower limit, u = 0.10 and Zti = 1.28. The lower limit is thus 1.43.

This means that we are 90% confident that Contractor 1’s system is 1.43 times
worse than Contractor 2’s system.

5. To find the confidence that Contractor 1’s system is at least twice as
bad as Contractor 2’s, we must find the confidence associated with a
lower limit of 2 for the ratio. Since, by definition, the lower limit is

We set this expression equal to 2, and solve for Za to obtain

z =  (ij/fi2 - 2)/djl(l-i32)/m-jfj .Cr

Substituting 0.233 for fil, 0.08 for 62, and 25 for n2, we have

z = 0.788 .
Ci

We look in Appendix B, Table 2 to find the value of u which corresponds to ZU

= 0.788. Since, by definition, P(2 ~ za) = a, the desired value of @ is

located under the column labeled P(Z ~ Za). Thus the value of a is 0.215.

This represents a 1OO(1-(Y)% = 78.5% lower confidence limit, so we are 78.5%
confident that Contractor 1’s system is at least twice as bad as Con-

tractor 2’s.

To find the confidence that Contractor 1’s system is at least 50% worse than
Contractor 2’s, we solve the following equation for z

u’

51/22 - za~fil(l-62)/n2~~  = 1.5.

The solution is:

z =  (51/5-2 ~- 1.5)/ pl(l-p2)/n2p2 .a

Substituting 0.233 for ~1, 0.08 for 62, and 25 for n2, we have

z = 1.22 .
a
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This corresponds to an ~ of 0.1112, so we are 88.88% confident that Contrac-
tor 1’s system is at least 50% worse than Contractor 2’s.
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CASE STUDY NO. 7-5

Background

Six electronic systems were tested. All systems had
and no design changes were introduced during the test.
tabulated below.

System Age System Age

the same configuration,
The test experience is

System Age
at Start of at Failure(s) at End of

@lS!!? Test, Hrs. Hrs. Test, Hrs.

1 0 13, 37, 60 275
2 75 154 2!30
3 0 73 290
4 150 190, 218 270
5 0 3, 52, 227 260
6 0 39, 166, 167, 209 260

Determine

Is exponential data analysis appropriate for this data set?

Solution

An average failure rate plot will be used to determine if there is a trend to
the data. The
is included to

SYSTEM I

SYSTEM 2

SYSTEM  3

SYSTEM 4

SYSTEM 5

following graph, although not a necessary part of the
aid visualization of the data.

I I
I I

I

0 I I 1 I
1

;
I

I
I I

I [ 010 1 I

I
I
I I

0 I
0 I I 0 1

I

i ; I
SYSTEM 6 0 I 0 10

J I

I I I

I I !
o I 00 200 300

SYSTEM AGE, HOURS

analysis,

The data will be broken down into three equal intervals. The steps involved

7726



in arriving at the average failure rate for each interval are contained in the
following table.

Interval Failures Operating Hours
Average

Failure Rate

o-1oo 7 425 7/425 = 0.0165
100-200 4 550 4/550 = 0.0073
200-300 3 445 3/445 = 0.0067

These average failure rates are plotted on the following graph.

I 00 200 300

SYSTEM AGE, HOURS

The average failure rate plot suggests very strongly that there is a decreas-
ing failure rate as the system ages, and exponential data analysis should not
be used unless, at a minimum, a caveat about the decreasing failure rate is
included.

Commentary

1. Although this is a fictional data set, the pattern to the data is fre-
quently observed in real data sets.

2. For a data set of this type, it is generally useful to consider the
actual failure types and corrective actions encountered. This tends to
clarify how permanent the high initial failure rate might be.
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CASE STUDY NO. 7-6

Background

Three developmental vehicles were operated under
matched the operational mode summary and mission
vehicles had the same physical configuration.
design change was introduced to the test vehicles

test conditions that closely
profile for the system. All
Only one relatively minor

during the test. Scoring of
.test-incide~ts determined that there were 7 operational-mission failures. ‘The
following table displays the operational mission failure data.

Vehicle Odometer Odometer Odometer
Number at Start(km) a t  F a i l u r e at End (km)

1 0 None 6,147
2 0 3,721; 6,121; 6,175 11,000

9,002
3 0 216; 561; 2,804 5,012

Determine

IS exponential data analysis appropriate for this data set?

Solution

An average failure rate plot will be used to determine if there is a trend to
the data. Three equal intervals will (arbitrarily) be used.

Interval Failures Kilometers Average Failure Rate

0-4,000 4 12.000 4/12.000 = 0.00033
4,000-8,000 2 7;159 2;7,159 =
8,000-12,000 1 3,000 1/3,000 =

These average failure rates are plotted on the following graph.

0.00040 -

I
0.00030

0.00020 -

0.00010 -

0.00028
0.00033

0 4,000 8,000 I 2,000
ODOMETER READING (km)
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Since the average failure rate plot is essentially horizontal, there is
virtually no evidence of trend in the data, and exponential data analysis
procedures may be used.

Commentary

For large data sets , the average failure rate plot gives a very precise
picture of the actual failure rate pattern. For small data sets, such as this
one, chance plays a very heavy role. For example, in this case we observed
one failure in the last interval. Just one more, or one less failure in this
interval would make a drastic difference in the observed average failure rate.
More formal trend tests address whether such variations could reasonably be
due to chance alone.
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CASE STUDY NO. 7-7

Background

The vehicle system discussed in Case Study 7-6 has a mission duration of 100
kilometers. The user has stated a minimum acceptable value (MAV) of 2,000
mean kilometers between operational mission failure (MKBOMF) and the con-
tractual reliability requirement is equivalent to a 4,000 MKBOMF specified
value (SV) . The analysis in Case Study 7-6 showed no trend to the data. The
test gave 22,159 km of exposure, and 7 operational mission failures were
observed.

Determine

1.
2.
3.
4.
5.
6.
7.

Point estimate of MKBOMF, mission reliability and failure rate.
80% confidence interval for MXBOPfF and mission reliability.
80% lower confidence limit for MKBOMF.
80% upper confidence limit for MKBOPfF.
What confidence do we have that
What confidence do we have that
Does the statistical evidence

the MAV has been met or exceeded?
the SV has not been obtained?
suggest that the reliability is satis-

factory, or not?

Solutions

Because Case Study 7-6 gave no evidence of trend, exponential data analysis
procedures will be used. Note that they are all based on test exposure, T =

22,159 kilometers, and number of failures, r = 7. Actual odometer readings at
failure need not be considered, except to note that the test exposure is
“time” terminated.

1. Point estimates of 0, R(1OO), and A.

a. Apply equation 7.6

~ =x = 22,159
r 7 = 3165.6 MKBOPfF

Convert to mission reliability using equation 7.7:

ii(x) = e
-x/6

ii(100) = e
-100/3165.6 = -0.0316 = o 969e . .

Convert to failure rate using equation 7.8:

~=1= 1
3165.6

= 0.000316 failures per km,
6

b. Use a reliability computer.
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The next
using the

two figures
reliability

illustrate the two-step solution procedure for part 1
computer.

J

,.

----+

\

—

L WE A R E  L O O K I N G  F O R  A  P O I N T  E S T I M A T E
2 .  N U M B E R  O F  F A I L U R E S  =  7

3. “TIME” = 2 2 . 1 5 9  T H O U S A N D  K M

4 .  P T .  E S T I M A T E  O F  “MTBF” ~ 3 . 2  T H O U S A N D  MKBOMF
5. PT. ESTIMATE OF FAILURE RATE % .31 FAILURES PER T H O U S A N D S  KM

7

k CONFIDEMEI  ~! *’”**- ‘ -”  ‘ I -- :-i

RELIABILITY

.s ,!? 1

-!

I NOTE: THE “RELIABILITY COMPUTER” SHWN  IN THIS ILLUSTRATION CAN BE PURCHASED FROM
—  T E C H N I C A L  A$JD EPJGINIIERING  AIDS FOR M A N A G E M E N T ,  B O X  25 T A M W O R T H ,  N. H. ,  03886 I
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6. PT .  EST IMATE OF  “MT BF”# 3,200 MKBOMF
Z “TIME”= M I S S I O N  D U R A T I O N  =  100 KM

8.  PT E S T I M A T E  O F  R E L I A B I L I T Y  ~ . 9 6 9
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2. An
mission

a.

b.

c.

80% confidence interval for
R(1OO).

Using Table 8, Appendix B we
for the case of 7 failures

0 and reliability for a ~00-kilometer

obtain the confidence limit multipliers
and 80% confidence interval, i.e., 90%

upper and 90% lower confidence limits. These multipliers are 0.665
and 2.797 for the 90% lower and upper confidence limits ,
respectively. Note we use Table 8a because this is a kilometers
(i.e., time) terminated test.

‘L
= multiplier (~) = (0.595)(3165.6) = 1883.5 MKBOMF

‘u
= multiplier (6) = (1.797)(3165.6) = 5688.6 MXBOMF

We are therefore 80% confident that

1883.5 < 0 ~ 5688.6 MKBOMF— —

Using inequality 7.9a, we find, for a = 0.20,

2T <8< 2T
—

‘;/2,2r+2
– 2

‘1-a/2,2r

2(22,159) < * < 2(22,159)
—

‘;.1O,16
– 2

*0.90,14

Using Appendix B, Table 5 for the appropriate X2 values, we have

44,318 44,318
23.55 L 0 ~ 7.79

We are 80~ confident that

1881.9 < e < 5689.0 MKBOMT——

In other words, we are reasonably sure that the MKBOMF is not less
than 1881.9, nor greater than 5689.0.

Converting to mission reliability using inequality 7.16, we find

e-x/8L<R(x)<e -x/Ou
— —

e-100/1881.9 < *(100) < e -100/5689.0
— —

We are 80% confident that

0.948 ~R(100) ~ 0.983
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Commentary

The reliability computer cannot be used for confidence intervals since it does
not have a capability for upper limits.

3. An 80% lower confidence limit for 6.

a. Use Table 8a, Appendix B to find the multiplier for an 80% lower
confidence limit with 7 failures.

‘L
= multiplier (6) = (0.684)(3165.6) = 2165.3 MKBOMF

Therefore, we are 80°~ confident that

(3 > 2165.3 MKBOMF—

b. Using inequality 7.10a, we find

t3~22T
‘a, 2r+2

~ > 2(22,159)
– 2

‘0.20,16

Using Appendix B, Table 5 for the X2 value, we have

* > 44,318
– 20.47

We are 80% confident that

(3 > 2165.0 MKBOMF—

c . Using a reliability computer, we find
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L C O N F I D E N C E  L E V E L = 80 ‘k

N U M B E R  O F  F A I L U R E S  =  7
“T IME”  = 2 2 . 1 5 9  T H O U S A N D  K M

4 .  L O W E R  L I M I T  % 2 1 . 7  T H O U S A N D  Kkl
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4 . An 80% upper confidence limit for 0.

a. Use Table 8a, Appendix B to find the multiplier for an 80% upper
confidence limit with 7 failures.

6U = multiplier (~) = (1.479)(3165.6) = 4681.9 MXBO~

Therefore, we are 80% confident that

9 < 4681.9 MKBOMF—

b. Using inequality 7.11, we find

e~22T

‘1-a,2r

~ < 2(22,159)
–2

‘0.80,14

Using Appendix B,

* < 44,318
– 9.47

Table 5 for the X2 value, we find

We are 80% confident that

e < 4679.8 MKBOMF—

Commentary

The reliability computer does not have a capability for upper limits.

5. What confidence do we have that 6 > 2,000?—

a. Using equation 7.12a, we find

2 = 2T
‘ci,2r+2 OL

2 2(22,159) = 22 159
‘(x,16 = 2000

Searching Appendix B, Table 5 in the row labeled 16 for a value of
22.159, we find values of 20.47 and 23.55. Interpolating, we obtain
a = 0.14. Confidence is 100(1-cY)% 3 100(1-0.14)%. We are approxi-
mately 86% confident that

6 > 2000 MXBOMI?—
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b. Using equation 7.13a, we find

r (T/OL)k e-(T/OL)
a= I

k=O
k!

T/8L = 2~&9 = 11.0795

r=7

~= (11.0795)0e-1*”07g5+  (11.0795)1e-11”0795
1 1

+ (11.0795)2e-11-0795  + (11.0795)3e-11.0795
2 6

+ (11.0795)4e-11.0795  + (11.0795)5e-1*.0795
2 4 120

+ (11.0795)6e-11”0795  + (11.0795)7e-11.0795
720 5040

= 0.0000 + 0.0002 + 0.0009 + 0.0035 + 0.0097

+ 0.0215 + 0.0396 + 0.0627

=  0 . 1 3 8 1

We are 86.2% confident that

6 . What confidence do we have that 6 < 4,000?

The confidence that 0 < 4,000 is the same as the confidence that 6 < 4,000.
The former statement is easier to interpret, although the latter is t~e usual
expression.

a. Using equation 7.14a, we find

2 = 2 T
‘1-a,2r ~

2
xl-a, 14

= 2(22,159) = ~1 08
4000 .
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Searching Appendix B, Table 5 in the row labeled 14 for a value of
11.08, we find values of 10.16 and 13.34. Interpolating, we obtain
l-a z 0.68. Confidence is 1OO(1-(Y)% ~ 100(0.68)%. We are approxi-
mately 68% confident that

(3 < 4 0 0 0  MKBOIW

b. Using equation 7.15, we obtain

r-1 (T/Ou)k e -(T/Ou)

l-~ = ~
k=O k!

r-1 = 6

l-ci = (5.53975)0e-5”53975 + (5.53975)1e-5”53975
1. 1

+ (5.53975)2e-5;53g75  + (5.53975)3e-5-53975
2 6

+ (5.53975)4e-5.53975  + (5.53975)5e-5-53975
2 4 120

+ (5.53975)6e-5.53975
720

= 0.0039 + 0.0218 + 0.0603 + 0.1113 + 0.1541 + 0.1708

+ 0.1577

= 0.6798

We are 68% confident that

o < 4000 MKBOMF

7. Does the reliability appear satisfactory?

We are 86% confident that the user’s needs have been met, but only 68% con-

fident that contractual obligations were not met. There is stronger evidence
that the reliability is satisfactory than not. If many more failures were
experienced, we would have low confidence that the user’s needs were met, and
we would also have higher confidence that the contractual obligations were not
met, suggesting that the reliability is not satisfactory from both
standpoints.
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CASE STUDY NO. 7-8

Background

An avionics system has the following reliability requirements: the minimum
acceptable value (MAV) = 150 hrs. MTBF, and the specified value (SV) = 450
hrs. MTBF. Three of these systems were tested for 100 hours (each) under test
conditions that closely duplicated the expected operational environment. No
failures were observed during this test.

Determine

An 80% lower confidence limit for MTBF, and the confidence that the MAV has
been attained.

Commentary

The case of a test with zero failures has some interesting features. With no
failures, there is no way to determine the type of failure pattern. If we
have some assurance that the equipment will not degrade as it ages, we can
make a constant failure rate assumption, which, in turn, permits an ex-
ponential data analysis.

If we attempt to obtain a point estimate of 9, we get:

g=z=T– = indeterminater o

Similarly, the upper limit is indeterminate. We can, however, obtain lower
confidence limits.

Solutions

1. 80% lower confidence limit for 9.

a. Note that the technique of using the multipliers from Table 8,
Appendix B, cannot be used for the case of zero failures.

b. Using inequality

e ~ ~2T

‘a, 2r+2

7.10a, we f i n d

We have in this case, T = 300, a = 0.2 and r = 0, so

~ > 2(300)
– 2

XO.2,2
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Using Appendix

~ > 600
– 3.22

B, Table 5 for the X2 value, we find

We are 80% confident that 0 > 186.3 hrs MTBF—

b. Using a reliability computer, we find

1.

2 .

3 .

r 4.

C O N F I D E N C E  L E V E L =  80%

NUM6EROF  F A I L U R E S  = O

T I M E =  3 0 0  H O U R S

L O W E R  L I M I T  ~ 186 H O U R S

2 I

uPOINT ‘ 2

F&%

RELIABILITY
AND

CONFIDENCE
FOR

CONTINUOUS

ESTIMATE ‘yi2&.9\
- i

II
--

DIRECTIONS ~=
T.an41kulnlnomwam*-m  s
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2. Confidence that O > 150—

a . As noted in part 1 of this problem, Table 8 cannot be used for the
case of zero failures.

b. Using equation 7.12a, we find

2 . 2T
‘cr,2r+2 ~

2(300) = ~ o
X:,2 = 150 “

Searching Appendix B, Table 5 in the row labeled 2 for a value of
4.0, we find values of 3.22 and 4.6o. Interpolating, we obtain a ~
.13. Confidence is 100(1-u)’j$ = 100(1-0.13)%. We are approximately
87% confident that

0 > 150 hrs MTBF—

c. Using equation 7.13a, we find

r (T/OL)k e-(T’OL)
~. 2

k=()
k!

For r =0, this simplifies to

In this case,

Cf=e - ( 3 0 0 / 1 5 0 )  =

We are 86.5% confident

6 > 150 hrs MTBF—

e-z = 0.135

that
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CASE STUDY NO. 7-9

Background

A system is being tested using test plan
upper test value (SV) is 100 hours MTBF,
hours MTBF. The required test duration

XIIC from Appendix B, Table 6. The
and the lower test value (MAV) is 50
is 940 hours, and 14 failures are

rejectable. The source ‘of data for this test plan is not relevant for this
case study, but is presented here for future reference. Chapter 8 contains
detailed discussions on the formation and use of this and other test plans.

The seventh failure has just occurred after only 57 hours of test exposure.
Because of the excessive number of failures , an evaluation is to be done at
this point in the test. Preliminary analysis of the data showed no evidence
of trend, i.e., failure rate appeared constant,

Determine

1. Point estimate of MTBF.

2. 80% confidence interval for MTBF.

3. 80% lower confidence limit for MTBF.

4. 80% upper confidence limit for MTBF.

5.’ What confidence do we have that the lower test value has been met or
exceeded?

6. What confidence do we have that the upper test value has not been at-
tained?

7. Does the statistical evidence suggest that the reliability is satis-
factory or not?

Commentary

Because an evaluation is being made at this point based on what was observed,
we do not have a legitimate random sample. The true risks in making decisions
based on such an analysis are difficult to determine. They are, in fact,
substantially higher than the ones associated with the original plan. Conse-
quently, the following analyses are all somewhat pessimistically biased.

Solutions

Since the seventh failure has just occurred, this is failure terminated data.

1. Point estimate of 0.
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Applying equation 7.6, we obtain

2 . h 80% confidence interval for 0.

a. Use Table 8b, Appendix B to obtain the confidence limit multiplier
for the case of 7 failures and 80% confidence interval, i.e., 90%
upper and lower confidence limits. Note we are using Table 8b
because the test is failure terminated.

8U = multiplier (6) = (2.797)(8.14) = 14.63 hrs. MTBF

‘L
= multiplier (~) = (0.665)(8.14) = 5.41 hrs. MTBF

We are therefore 80% confident that

5.41 < 0 < 14.63 hrs. MTBF—

b. Using inequality 7.9b, we find, for cr = 0.20,

2T 2T
2 5°52

‘a/2,2r ‘1-a/2,2r

Using Appendix B, Table 5 for X2 values:

1 1 4 1 1 4
2 1 . 0 7  ‘6 s 7 . 7 9

We are 80% confident that

5.41 ~ 6 ~ 14.63 hrs MTBF

3. An 80% lower confidence limit for 6.

a. Use Table 8b, Appendix B to find the multiplier for an 80% lower
confidence limit with 7 failures.

‘L
= multiplier (~) = (0.771)(8.14) = 6.28 hrs. MTBF

Therefore, we are 80% confident that

9 > 6.28 hrs. MTBF—

b. Using inequality 7.10b, we find

0+-
‘a,2r
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Using Appendix B, Table 5 for the X2 value, we find

114
* ~ 18.15

We are 80% confident that

6 > 6.28 hrs MTBF.

4. An 80$ upper confidence limit for 0.

a. Use Table 8b, Appendix B to find the multiplier for an 80% upper
confidence limit with 7 failures.

‘u = multiplier (6) = (1.479)(8.14) = 12.04 hrs. MTBF

Therefore, we are 80°L confident that

0 < 12.04 hrs. MTBF—

b. Using inequality 7.11, we find

e~22T

‘1-u,2r

Using Appendix B, Table 5 for the X2 value, we obtain

114
0  59.47

We are 80% confident that

9 < 12.04 hrs MTBF—

5. What confidence do we have that e > 50?—

a. Using equation 7.12b, we find

‘;,2r = 2T/OL

X:,14
=  2 ( 5 7 ) / 5 0  =  2 . 2 8

Searching Appendix B, Table
2.28, we find that we are
0.995. The confidence is
0.5%.

5 in the row labeled 14 for a value of
beyond the end of the table, and a >
loo(l-a)%, 100(1-o.995)%, or less than

We are less than 0.5% confident that

9 ~ 50 hrs MTBF
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b.

6 . What

a .

b .

7 . Does

S i n c e  w e
exceeded,

Using equation 7.13b, we find

r-1 (T/OL)k e- (T/f3L)

@.~
k=()

k!

where

T/eL =57/50 =1.14 and r-1=7- 1=6.

Solving equation 7.13b, we find c1 = 0.9998.

We are 0.02% confident that 6 > 50 hours MTBF.—

confidence do we have that 0 < 100?—

Using equation 7.14, we find

x:-a,14
2 ( 5 7 )

=—---14.l4
100

Searching Appendix B, Table 5 in the row labeled 14 for a value of
1.14, we find that we are well beyond the end of the table, and l-~
z 1.0. The confidence is 100(1-o)%, 100(1.0)%, or essentially 100%.

We are essentially 100% confident that

e < 100 hrs MTBF—

Using equation 7.15, we find

- (T/OU)
r-1 (T/$U)k e

l-a = z
k=O

k!

where

T/OU=0.57andr-1=7 -1=6

Solving equation 7.15, we find l-a = 0.99999.

We are essentially 100% confident that

(3 < 100 hrs MTBF—

the reliability appear satisfactory?

have essentially O% confidence that the lower test value is met or
and since we have essentially 100% confidence that the upper test

value is not met, there is overwhelming evidence that the reliability is not
satisfactory , even taking into consideration the fact that the analysis may be
somewhat pessimistically biased.
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In this case, the evidence is so strong that we can even state that we are
99. 98% confident that 6 ~ 50 hrs MTBF, though, ordinarily, upper limit state-
ments are associated with the upper test value, and lower limit statements are
associated with the lower test value.

Commentary

Test plan XIIC from Appendix B, Table 6 required a test duration of 940 hours
to achieve true producer’s and consumer’s risks of 0.096 and 0.106, re-
spectively. Since the system appears to be “failing miserably,” the user has
chosen to stop testing after 57 hours. No doubt this is a wise decision from
an economic standpoint. However, the user should be fully cognizant that the
risks associated with his abnormally terminated test are not 0.096 and o.1o6,
nor are they the ones advertised in the preceding computations. The calcula-
tion of the true risks is well beyond the scope of this work.
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